Biostadistic

 

Determine the interval of 95% confidence for the average heights of the population using the following information:

The average height of a random sample of 400 people from a city is 1.75 m. It is known that the heights of the population are random variables that follow a normal distribution with a variance of 0.16.

Confidence Interval Formula = ( x̄ – z * ơ / √n) to ( x̄ + z * ơ / √n)

 

Sample Answer

 

 

 

 

 

 

  •  

The 95% confidence interval for the average height of the population is 1.7108 m to 1.7892 m.

This means that we are 95% confident that the true average height of the population is between 1.7108 meters and 1.7892 meters.

 

Calculation Details

 

 

1. Identify the Parameters

 

Sample Mean (xˉ): 1.75 m

Sample Size (n): 400

Population Variance (σ2): 0.16

Population Standard Deviation (σ): 0.16​=0.4 m

Confidence Level: 95%

z-score (z): ≈1.96 (for a 95% confidence level)

Calculate the Standard Error of the Mean (SEM)

 

The standard error of the mean is calculated as:

 

SEM=σn\text{SEM} = \frac{\sigma}{\sqrt{n}}SEM=0.4400=0.420=0.02 m\text{SEM} = \frac{0.4}{\sqrt{400}} = \frac{0.4}{20} = 0.02 \text{ m}

 

3. Calculate the Margin of Error (ME)

 

The margin of error is calculated as the $z$-score multiplied by the standard error:

 

ME=z·SEM\text{ME} = z \cdot \text{SEM}ME1.96·0.02=0.0392 m\text{ME} \approx 1.96 \cdot 0.02 = 0.0392 \text{ m}

 

4. Determine the Confidence Interval

 

The confidence interval is calculated using the formula:

 

x¯-ME,x¯+ME\left( \bar{x} - \text{ME}, \bar{x} + \text{ME} \right)

 

Lower Bound:

 

1.75-0.0392=1.7108 m1.75 - 0.0392 = 1.7108 \text{ m}

 

Upper Bound:

 

1.75+0.0392=1.7892 m1.75 + 0.0392 = 1.7892 \text{ m}

IS IT YOUR FIRST TIME HERE? WELCOME

USE COUPON "11OFF" AND GET 11% OFF YOUR ORDERS